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We determine the solutions in integers of the equation y2 =
(x + p)(x2 + p2) for p = 167, 223, 337, 1201. The method used
was suggested to us by Yu. Bilu, and is shown to be in some
cases more efficient than other general purpose methods for
solving such equations, namely the elliptic logarithms method
and the use of Thue equations.

1. INTRODUCTION

In this paper we study� as typical examples from
the class of elliptic equations� for a few given primes
p� the diophantine equation

y� � �x� p��x� � p�� (1–1)

in x� y � Z� The elliptic curves de�ned by these
equations have been studied by Stroeker and Top
	
���� who proved inter alia upper bounds for the
ranks of these curves� In the cases p � � and
p � �� �mod �� they showed that the rank is
�� so that the only solution of equation �
�
� is
�x� y� � ��p� ��� and in the case p � ��� �with rank
�� all the solutions of equation �
�
� have been de�
termined by Stroeker and Tzanakis 	
���� The
results of 	Stroeker and Top 
��� on the Selmer
groups and ranks of �
�
� have been generalized
by Schmitt 	
��� to composite p�

In the present paper we will solve �
�
� for the
cases p � 
��� p � ���� p � ��� and p � 
��
�
thus redoing and extending the work of Stroeker
and Tzanakis� but the method we use di�ers from
theirs� Notice that in these cases the ranks of the
elliptic curves are 
� 
� �� and � respectively� see
	Stroeker and Top 
���� We will prove�
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Theorem 1. The diophantine equation

y� � �x� 
����x� � 
����

has only the solution �x� y� � ��
��� ���
Theorem 2. The diophantine equation

y� � �x� �����x� � �����

has only the solution �x� y� � ������ ���
Theorem 3 	Stroeker and Tzanakis 
���� The dio�

phantine equation

y� � �x� �����x� � �����

has only these solutions�

x y

���� �
���� ��
��
�

� �
���
�

����� �
���
�
�
Theorem 4. The diophantine equation

y� � �x� 
��
��x� � 
��
��

has only these solutions�

x y

�
��
 �
��� ������


��� �
�
���
����� �
�����
�

Three methods of a more or less general nature ex�
ist for solving elliptic diophantine equations� which
we will call the �elliptic logarithms method�� the
�Thue approach�� and the �alternative approach��
The two latter methods use linear forms in log�
arithms of algebraic numbers� all three methods
lead to rather large upper bounds� that are sub�
sequently reduced by computational diophantine
approximation techniques�

The method of elliptic logarithms was developed
independently by Stroeker and Tzanakis 	
���� by
Gebel� Peth�o and Zimmer 	Gebel et al� 
���� and
by Smart 	
���� It was used by Stroeker and Tza�
nakis for solving equation �
�
� in the case p � ����

It is applicable in general� if one has explicit knowl�
edge of a full set of generators for the group of ra�
tional points on the curve� modulo torsion� Algo�
rithms for �nding such generators can be found in
	Cremona 
���� Gebel and Zimmer 
���� but are
not guaranteed to produce an answer� and some�
times rely on the Birch�Swinnerton�Dyer Conjec�
ture� Cremona has implemented his ideas in a
program called mwrank� and the computer algebra
system Simath contains an implementation of the
algorithm of 	Gebel and Zimmer 
���� I am grate�
ful to the referee for pointing out to me that the
Simath system could verify our results for p � ����
��� and 
��
� but not for p � 
��� due to the large
height of the generator of the Mordell�Weil group
in this �rank 
� case�

The Thue approach is the most classical� exam�
ples in the literature are 	Ellison et al� 
���� Tza�
nakis and de Weger 
���� Several factorizations
over appropriate number �elds� where one some�
times has to distinguish between many cases� lead
to a �nite number of Thue equations� and each
Thue equation leads to a �nite number of three�
term unit equations� These can be solved in prac�
tice� if in certain �elds the generators of unit groups
and decompositions into prime ideals can be found�
Algorithms for such problems have been developed
by many mathematicians� see� for example� 	Pohst
and Zassenhaus 
���� Cohen 
����

The alternative approach is the most recent to
have been applied in practice� It was used in 	Mi�
gnotte and Peth�o 
���� a general description of
its application to superelliptic equations is given
by Bilu 	
���� The method �including a p�adic
variant� was also used in 	de Weger 
���� In this
method one does factorizations in a somewhat dif�
ferent way than in the Thue approach� also leading
to a subdivision in several cases� but ending in a
number of four�term unit equations with special
properties� The route to this unit equation seems
to be shorter in general than the Thue approach re�
quires for reaching the three�term unit equations�
the �elds one encounters usually have more nonreal
embeddings into C and hence are easier to treat�



de Weger: Solving Elliptic Diophantine Equations Avoiding Thue Equations and Elliptic Logarithms 245

and also it is our impression that the number of
cases to be distinguished is in general less than the
Thue approach leads to� at least in the few cases we
studied in some detail� However� in the alternative
approach it might easily happen that one has to
factor over larger degree �elds� which means that
one faces larger unit ranks� and more complicated
�elds�

We feel that it is not possible to give a general
statement on the superiority of one method over
any other� This will depend very much on the par�
ticular elliptic equation one wants to solve� For ex�
ample� in 	Stroeker and de Weger 
��� it is shown
that the elliptic logarithms method may succeed
when the Thue approach fails �certainly also the
alternative approach will fail there�� The choice
of examples p � 
�� and p � ��� in this paper is
motivated by the fact that equation �
�
� is more
di�cult to solve by the elliptic logarithms method
than by the Thue and alternative approaches� This
is because the group of rational points of the ellip�
tic curve modulo torsion� which has rank 
 in these
cases� has a generator of extremely large height
	Stroeker and Top 
���� whereas the generators of
the unit groups occurring in the Thue and alterna�
tive approaches are much easier to determine� Fur�
ther� we chose the cases p � ��� and p � 
��
 as
examples because they are the smallest two primes
for which the rank of the elliptic curve is �� and
because in these cases the Thue approach seems
more complicated than the alternative approach�
However� note that in these two cases the elliptic
logarithms method of 	Stroeker and Tzanakis 
���
is to be preferred�

Since generators of the group of rational points
of the elliptic curve modulo torsion are known for
the cases p � 
��� ��� and 
��
 	Stroeker and
Top 
���� the elliptic logarithms method should
be very e�cient in solving �
�
�� just like the sit�
uation turned out to be in 	Stroeker and Tzanakis

��� for the case p � ���� We did not try this
out� Our point here is that especially in the cases
p � 
�� and p � ��� these generators were hard
to �nd� and that therefore the Thue or alternative

approaches are to be preferred� Further� our point
with the cases p � ��� and p � 
��
 is that the
alternative approach is superior to the Thue ap�
proach�

We remark that our equation �
�
� is only an
example� but that the alternative method works in
principle for any equation of the type yn � f�x��
with n � �� and f a polynomial with integral coe��
cients and with at least three distinct linear factors
over C � In practice it works whenever the �elds one
encounters are not too complicated� i�e� when n is
not too large� the polynomial f has enough factors
of low degree� and fundamental units can be found�

2. SOME WORDS ON THE THUE APPROACH

Throughout this paper� p is a �xed prime number
congruent to �
 �mod ���

Although we intend to prove Theorems 
 to � by
the alternative approach� we will give some details
of the Thue approach too� so that we can indicate
how easy or di�cult this approach might be�

Let D be the squarefree part of x� p� By �
�
��
it is also the squarefree part of x� � p�� Then

D j �x� � p��� �x� p��x� p� � �p��

so D � f
� �� p� �pg� Note that x � p � � unless
�x� y� � ��p� ��� There exist U� V � Z such that

x� p � DU �� x� � p� � DV �� (2–1)

The Case D = 1

We start with the case D � 
� If p jx then p jV �
hence ���
� implies �x�p���
 � �V�p�� in integers
x�p� V�p� from which it follows that x � �� V � p�
This contradicts x � p � U �� Hence �x� p� � 
�
and by x� � p� � V � there exist m�n � Z with
�m�n� � 
 and m � n � � such that

x � ��mn� p � m� � n�� V � m� � n��

Since p is prime this implies that m � n � 
 and
m� n � p� hence

x � � �
�
�p� � 
�� V � �

�
�p� � 
��
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k p

� ���
�� �������������	��
�� �����	������������
�� ���
�	��
��	�
	����������
��
�� ��
�
	�	����	������
�������	������	�����������������	����
����
��
��	�	������

TABLE 1. Cases where solutions with D � � exist�

from which we derive by U � � x� p that

U � � �
�
�p� 
�� � 
 or U � � � �

�
�p� 
�� � 
�

It is immediate that the �rst case holds� and clearly
this can happen only when p � 
 �mod ��� The
theory of Pell equations tells us that

p �

p
�

�
�
 �

p
���k�� � �
�

p
���k��

�� 


for some k � Z� k � �� Given p� it is easy to
determine whether it is of the above form� In fact�
the above expression on the right hand side yields
a prime number for only a few k � 
��� listed in
Table 
 �we used the isprime functions of Maple
V�� and Pari 
��� as primality tests��

For our favourite p�s thus only p � ��� admits
solutions of �
�
� with D � 
� namely �x� y� �
��������
���
�
��� Note that no p � ���� � 
���

other than those in Table 
 admit solutions of �
�
�
with D � 
�

This concludes our treatment of the case D � 
�

The Case D = 2

We write the second equation of ���
� as p���V � �

�x�� and factor it over Q �
p
��� Standard argu�

ments yield that we may write

p� V
p
� � �
 �

p
��pa�A�B

p
���

for an a � f�� 
g� and with unknowns A�B � Z�
Comparing coe�cients we �nd

p��a � A���AB��B� � �A��B����B�� (2–2)

and taking norms we �nd �x� � �p�a�A���B����
so that by the �rst equation of ���
�

�U � � p � x � �pa�A� � �B��� (2–3)

If a � � we add ����� to ������ If in ����� the �
holds� we �nd U � � A�A��B�� Equation ����� im�
plies that A and B are coprime and that A is odd�
Hence A and A� �B are coprime� and there must
exist E�F � Z such that A � F � and A��B � E��
We substitute this into equation ������ and thus
obtain a Thue equation

E� � �E�F � � F � � �p� (2–4)

Notice that B � �
�
�E� � F ��� and this is even� So

����� shows that p � 
 �mod ���
If in ����� the � holds� we �nd U � � ��A�B�B�

If p � 
 �mod �� then B is even� and we �nd A�
B � E� and B � �F �� leading by ����� to the
Thue equation

E� � �E�F � � �F � � p� (2–5)

If p � �
 �mod �� then B is odd� and we �nd
A�B � �F � and B � E�� leading by ����� to the
Thue equation

E� � �E�F � � �F � � �p� (2–6)

If a � 
 then it follows that p jU � so let us write
U � pU�� Then ����� yields

�pU �
� � 
 �

x

p
� ��A� � �B��� (2–7)

We add ����� to ������ and if in ����� the �
holds� we �nd pU �

� � A�A � �B�� Now note that
A is odd� hence so is U�� If p � �
 �mod �� then
����� is impossible �mod ��� hence p � 
 �mod ���
In the case p jA we �nd A � pF �� A � �B � E��
leading by ����� to the Thue equation

E� � �pE�F � � p�F � � �� (2–8)
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And in the case p jA � �B we �nd A � E�� A �
�B � pF �� leading by ����� to the Thue equation

E� � �pE�F � � p�F � � ��� (2–9)

If in ����� the� holds� we �nd pU �
� � ��A�B�B�

Now note that A is odd� and U� and B are even� If
p jA�B then ����� is impossible �mod p�� hence
p jB� and we �nd A � B � E� and B � �pF ��
leading by ����� to the Thue equation

E� � �pE�F � � �p�F � � 
� (2–10)

So we end up with a number of quartic Thue
equations ������ ������ ������ ������ ������ ���
���
which one can try to solve explicitly by the method
described in 	Tzanakis and de Weger 
����

The Cases D = p and D = 2p

In the cases D � p and D � �p we write D �
pD�� x � pz� V � pW � and �nd from ���
�

z � 
 � D�U
�� z� � 
 � D�pW

�� (2–11)

Now �
 is a quadratic residue �mod p�� so this
shows that p � 
 �mod ��� i�e� these cases do not
occur when p � �
 �mod ��� It is easiest to fac�
tor the second equation of ���

� over Q �i�� Let
a�� b� � Z be such that a� � b� � � and p � a���b���
A prime dividing both z � i and z � i must be

 � i� so we �nd that there are a� b� c� d � f�� 
g
and A�B � Z such that

z � i � ia�
 � i�b�a� � b�i�
c�a� � b�i�

d�A�Bi���

Taking the norm we �nd

D�pW
� � z� � 
 � �bpc�d�A� �B����

and it follows that �b � D� and �c� d� � �
� �� or
��� 
�� We write

ia�
 � i�b�a� � b�i�
c�a� � b��

d � r � si�

so a priori we have eight cases� �r� s� � �a���b���
��b�� a��� �a�� b�� a�� b��� ��a�� b�� a�� b��� We
always have r� � s� � D�p�

So we �nd

z � i � �r � si��A�Bi��

for unknown A�B � Z� and comparing imaginary
parts leads to


 � sA� � �rAB � sB�� (2–12)

Further� W � � �A� �B���� so we �nd

z� � D�pW
��
�

� �r��s���A��B�����sA���rAB�sB���

� �rA���sAB�rB����

hence

D�U
� � 
 � z � ��rA� � �sAB � rB��� (2–13)

We add ���
�� to ���
��� and in the case of �
in equation ���
�� we obtain

D�U
� � �r � s�A� � ��r � s�AB � �r � s�B�

�



r�s

�
��r � s�A� �r � s�B�

� � �D�pB
�
�
�

(2–14)
In the left and right�hand sides there are three
quadratic terms here� and there are three ways of
putting two of them on one side of the equality
sign� Hence we can factor in three ways� namely
over Q

�p
���D��p

�
� over Q �D��r � s��� or over

Q ���p�r � s��� Any of these factorizations will
yield quadratic form expressions forA andB� whose
substitution into ���
�� gives a few Thue equa�
tions� di�cult to describe in general but easy to
�nd for each particular value of p�

In the case of � in equation ���
�� we obtain

D�U
� � �s� r�A� � ��r � s�AB � �s� r�B�

�



s�r
�
��s� r�A� �r � s�B�

� � �D�pB
�
�
�

(2–15)
which again can be factored in three ways� namely
over Q

�p
���D��p

�
� over Q �D��s � r��� or over

Q ���p�s� r��� As above this leads to a few Thue
equations�
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The quartic Thue equations thus found can in
principle be solved following the method outlined
in 	Tzanakis and de Weger 
����

Some Details for p = 167, 223, 337, 1201

When p � ��� or p � ��� we only have to look at
the Thue equations ���� and ������ The only bot�
tlenecks in the Thue approach are the determination of
fundamental units in the quartic �eld associated to the
binary form of the Thue equation� and the determina�
tion of the primes in this �eld lying above the primes
in the constant term of the Thue equation� In the case
of equation ���� we have for each p the same quartic
�eld� namely the one generated by a root of x���x����
which is an easy �eld� of discriminant only �����
In the case of equation ����� we have for p � ���

a quartic �eld with discriminant ��������� generated
by a root � of x� � ���x� � ��		�� The class number
is �� the regulator is ��
��
�
� � � � � and fundamental
units are �

����
� and one with coe�cients over �� digits

long� This is a bit awesome� but still workable� For
p � ��� the situation with equation ����� is much
better� mainly because of the large class number� which
keeps the fundamental units small notice that the class
group itself is irrelevant to solving Thue equations with
constant term equal to ��� Indeed� we have a quartic
�eld with discriminant ��������� generated by a root �
of x�����x�� ������ The class number is ��� the reg�
ulator is ���	���� � � � � and fundamental units are �

����
�

and ���� � ��	� � �		
����

� � 	�
����

�� which is very well
workable�
These remarks show that the Thue approach is prac�

tically possible for p � ��� and p � ���� although a
bit more di�cult for p � ���� We will not work out
details� as it is a matter of routine only� following the
arguments outlined in �Tzanakis and de Weger ��	���
When p � ��� or p � ���� we have to solve the

equations ����� ��
�� ��	�� ���� and ������ and to
work further with equations ����� and ���
�� Equa�
tions ���� and ��
� are easy� as they give rise to the
quartic �eld of discriminant ���� studied above� Equa�
tions ��	� and ���� are trivial in the cases p � ���
and p � ����� because in the quartic �elds the only
prime ideal of norm � is nonprincipal� so there exist no
algebraic integers with norm � in these �elds� Equation
����� is still doable� although for p � ���� we get a
fundamental unit with about �� digit coe�cients�

The real problems start when we treat ����� and
���
�� For example� the solution x � 
		�� of ����
with p � ���� here a� � �
� b� � ��� comes from the
solution A � �� B � �� U � 
 of equation ����� in
the case r� s� � ��� ��� This equation reads �
A� �
�	AB� �
B� � U�� and the left�hand side factors over
Q 
p
������ This quadratic �eld is quite unpleasant�

since its fundamental unit is

� � ���	�	��
���������������

� �����	������			���
����
� �

p
����

�
� (2–16)

The above solution comes from the factorization

�
A� ��B �B
p
���� �

�
E � F

� �
p
����

�

��
�

which gives A � �
�
E

�� ��
�
EF �


��

� F

� and B � EF �
�
�F

�� This substituted into ����� yields the Thue equa�
tion

�E���	�	E�F�����		E�F ������
�	EF ��	�����F �

� ��
��

which obviously has the solution E � 
� F � �� The
quartic �eld related to the binary form of this equation
is generated by a root of x���	x���� and so the Thue
equation is relatively easy to solve�
But we must also study� among others� the case of

�
A� ��B �B
p
���� � �

�
E � F

� �
p
����

�

��
�

for � as in ������ which leads as above to

A �
��
��	���	���	����	�
��

�

E�

�
��������������������
����

�

EF

�
�	��	������	���	����������


�
F �

and

B � ��	
���	
�����������	
E�

� �
��������	�

��	�������EF

�
�
��������	���������
����

�
F ��

This� substituted into ������ yields the horrible Thue
equation shown at the top of the next page�and this
is only one of a number of such equations to be solved�
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����		����	���	���������������	�
�����	�
�	�����	e�

� �		�����	�����������������
�	�	��������	�����������e�f

� 
���	�������
�
�����������
�����		�
���
�	�
��	��	�	e�f�

� 
�	�����������������	������
������	�
����	��	�	
�	���ef�

� ������	��������	�
��
�������
���		
�����

����������
�f� � ��
��

A typical Thue equation occurring for p � ���� see end of preceding page��

We can try to avoid such complicated equations by
writing ����� as �
A� ��B�� � �
U� � ����B�� and
factoring over Q 

p������� which is a much nicer �eld
from the point of view of units� Let�s see what this
leads to� The �eld Q 

p������ has a cyclic class group
of order ��� the prime � rami�es� and the prime 
 splits�
From this it�s easy to conclude that there is an integral
ideal a such that 
U � B

p������ � 
�aa�� where
a � f�� �g� If p is the ideal of norm �� which is nonprin�
cipal� then either a or pa is principal� written as E �
F
p������� because a� and p� are principal� From this
it follows that U � d


 E
� � ����F ��� B � �dEF � and

A � d
�
 E

� � �	EF � ����F ��� where d � f�� �� � 
� 
�g�
We substitute this into A� � �	AB �B� � �� and thus
�nd the Thue equations

E���	��E�F�������E�F ��
������EF ���������F �

� �
� ���� ��
� �
���

The quartic �eld we meet here is generated by a root
of x� � �	x� � �� and is friendly enough to admit an
e�cient solution� However� we have treated only one
case of r� s�� so that the number of Thue equations to
be solved will be much larger� although probably not as
large as when factoring over Q 

p
������

Our conclusion is that the Thue approach is e�cient
for p � ��� and p � ���� and� when factoring in the
right way� might be doable for p � ��� and p � ����� al�
though a large number of cases have to be distinguished�

3. THE ALTERNATIVE APPROACH

Deriving a Four-Term Unit Equation

We start o� as in the Thue approach� so our start�
ing point now is the system ���
� of Section �� We
have seen that we only have to look at the cases
D � �� p� �p� and if p � �
 �mod �� we may even
restrict ourselves to D � ��

From now on we will concentrate only on our
four favourite values for p� namely 
��� ���� ���
and 
��
� However� we stress that for any reason�
able value of p one should be able to carry out the
method as easily as in the cases worked out below�

We factor the quadratic equation in ���
� over
Q �i�� Let � be the squarefree part of x � pi� We
can write

x� pi � ���

for an algebraic integer � � Q �i�� If � is a prime el�
ement in Q �i� dividing � but not D� then it divides
also x�pi� hence it must divide �x�pi���x�pi� �
�pi� This shows that we can take

� � ia�
 � i�b�	� 
i�c�	� 
i�d

for a� b� c� d � f�� 
g� where we take

	 � p� 
 � d � � if p � 
�� or ����
	 � �� 
 � 
� if p � ����
	 � ��� 
 � �� if p � 
��
�

so that 	�
i is a prime element dividing p� Notice
that D is the squarefree part of N��� � �bpc�d�

We now have the cases given in Table �� Note
that sometimes we took a � �
 in stead of a � 
�
which is not an essential change�

Let�s pause for a moment and see what happens
to the known solutions� listed in Theorems 
 to
� in Section 
� For any p there is the solution
x � �p� which occurs in case II� with � � p � pi�
and � � i� For p � 
�� and p � ��� there are no
other solutions� For p � ��� and p � 
��
 we give
data in Table � �neglecting the solution x � �����
for p � ���� since that one has D � 
��
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case a b c� d� � D

I ���� � �� �� �� i �

II ���� �

�
�� �� if p � � mod 	�
�� �� if p � �� mod 	� p� pi �

III � � �� ��� �� �� �� �i p

IV �� � �� ��� �� �� � � �i p

V ���� � �� ��� �� �� �� ��� � � ��i �p

VI ���� � �� ��� �� �� �� ��� � � ��i �p

TABLE 2. Possibilities for ��

p x case � 	

��� ��	� I � � i �� � ��i
��� ���� I � � i ��� ��i
���� 
�� I �� i �	 � �
i
���� ���� I �� i �� � �
i
���� 
		�� VI ��� ��i �� � �
i

TABLE 3. Tracing the known solutions�

We continue our general discussion� We elimi�
nate x from x�p � DU � and x�pi � ���� multiply
by D� and thus �nd

Dp�
� i� � �DU�� �D����

We factorize this equation over the �eld K � Q ����
where �� � D�� This is a totally complex quartic
�eld� a quadratic extension of Q �i�� Let � be a
fundamental unit in K � Then there exists a �nite
set of  � K such that

DU � �� � �a� (3–1)

for some a � Z� In the Appendix to this paper we
will determine complete sets of nonassociated �s
for each �� and we present the necessary data on
the number �elds K �

Let � be the nontrivial Q �i��automorphism of K
that sends � to ��� Then

����� � �

for a fourth root of unity �� so we �nd from ���
�

DU � �� � �������a � �a�����a� (3–2)

Now we apply complex conjugation to ���
� and
������ and obtain

DU � �� �  �a� (3–3)

DU � �� � �
a
��� ��a� (3–4)

From the four equations ���
� � ����� we eliminate
the variables U� �� which is simply done by noting
that in the left�hand sides

���
� � ����� � ����� � ������

In the right�hand sides this gives a four�term unit
equation�

�a � �a�����a �  �a � �
a
��� ��a� (3–5)

Here only the variable a � Z remains�

Deriving an Upper Bound

We take an embedding of K into C such that j�j �

� Put a� � a �mod �� with a� � f�
� �� 
� �g� We
rewrite equation ����� as

�a �  �a � �
a�

��� ��a � �a
�

�����a�

and deduce from this� for the case a � � the in�
equality ���� 

� �
�

�a
� 


���� � �
j���j
jj j�j��a� (3–6)

and for the case a � � the inequality�����
�
�

�

�a�
���

���

� �
�

��a
� 


����� � �
jj

j���j j�j
�a� (3–7)
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Notice that by ��� � �Dp�
� i� we have

���

���
� �b

�

�




���

for a b� � f�
� 
g �here � is a generator of the
torsion unit group� i�e� � � �i�� Further� notice
that we always have  � ��kj or  � ��k��j��
where the numbers j for j in a subset of f
� �� �g
are given in the Appendix� In what follows� each
di�erent j is treated separately�

Now de�ne 	�� 	�� 	� � ���� � by
ei�� �

j
j

� ei�� �
�

�
� ei�� � i�

so 	� � ���� Inequality ����� now reads

jei������l����a��� � 
j � �
j���j
jj j�j��a

for an l � Z� that is determined modulo � only�
and similarly inequality ����� becomes

��ei������l����a��� � 

�� � �

jj
j���j j�j

�a�

So we now put

� � 	� �A	� � l	�

where A � a or A � �a such that the left�hand
sides of ����� and ����� become je�i � 
j� and
where we take l so that j�j � �� This choice of l
ensures that

B � maxfjAj� jljg � � � � jAj� (3–8)

Then� by ����� and ������ the following inequality
holds in all cases�

j�j � Kj�j��jAj� (3–9)

where

K � ��max

� j���j
jj �

jj
j���j

	
�

In the Appendix we give the values of K and log j�j
in all our cases�

Note that � � � implies by ������ ����� and
����� that �a equals its complex conjugate� hence

by ���
� and ����� the same is true for ��� Then
by the de�nition of � we have that x� pi � ��� �
������D equals its complex conjugate� which is ob�
viously false� So � 	� �� and we are in a position
to apply the theory of linear forms in logarithms�
The result of 	Baker and W ustholz 
��� is

j�j � e�C logB (3–10)

for a large constant C� In the Appendix we com�
puted C for all cases� Notice that in all cases ���
and � lie in a �eld of degree � over Q � Fur�
ther� in case II it appears that the linear form in
fact has only two terms� since then it happens that
	� �

�
�
�� so that we can write � � A	��L��� for

an L � Z� and rede�ne 	� as �
�
�� and 	� as ��

The lower bound ���
�� for j�j contradicts the
upper bound given by ����� if B becomes large
enough �and thus� in view of ������ jAj too�� Pre�
cisely� in this way we �nd by ������ ������ and
���
���

C logB � � log j�j � � logK � �jAj log j�j
� � logK � � log j�j �B log j�j�

From the numerical values of our constants we thus
�nd

jAj � B � B�� (3–11)

where B� is given in the Appendix �and in Table �
below�� In fact� in all cases B� � 
������ � 
����

Reducing the Upper Bound

In reducing the upper bound ���

� we follow 	Tza�
nakis and de Weger 
���� Take a constant C��
somewhat larger that B�

� � Put

A �

�

 �

	C�	� 	C�	�

�
� y �

�
�

�	C�	�

�
�

where 	 
  denotes rounding o� towards zero� Note
that in case II we have y � �� Consider the lattice

! � fAx � x � Z
�g�

and put

d�!�y� � min
u���u��y

ju� yj�
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By a variant of the Euclidean algorithm it is easy
to compute d�!�y�� For a solution �A� l� of �����
we de�ne � by

A

�
A
�l
�
� y �

�
A
�

�
�

As in 	Tzanakis and de Weger 
��� we �nd A� �
�� � d�!�y�� and j� � C��j � 
 � �B�� Using

������ this shows that if d�!�y� �
p

�B�
���B��
�

then

jAj � 


� log j�j
�
logC� � logK

� log
�p

d�!�y�� �B�
� � �
 � �B��

��
�

We did this reduction in each case� using C� �

���� and in case I for all p subsequently using C� �

�
 and the new B� being � � �� the just found
reduced upper bound for jAj� We present results
in Table ��

Note that the size of the initial upper bound
B� is determined almost entirely by the number
of terms in the linear form in logarithms �� in case
II and � in the other cases�� Further� the size of
the reduced bound is determined almost entirely
by the regulator log j�j� This becomes apparent
in a remarkable way in case II for p � 
�� and
p � 
��
� where the bound is reduced in one step
from 
������� 
��
 to �� even with a far too large
C�� and hence far too large d�!�y��

We thus reach jAj � � in all cases� For the few
remaining possibilities we checked equation ������
and thus found only the solutions listed in Table ��

This completes the proof of Theorems 
 to ��
The total computation time is to be measured in
minutes only on a ��� personal computer�

APPENDIX

Our main task in this Appendix is to compute all pos�
sibilities� up to units modulo torsion� for the parameter

 in equation ����� This parameter satis�es

NK�Q �i�
� � 
�
� � �Dp�� i��

NK�Q 
� � �D
�p��

(A–1)

case p j C� B� � d���y� � jAj �

I ��	 � �
�� ���	�� � �
�� ����	� � �
�� ��
�
� 	
 �
��	� �

I ��� � �
�� ����	� � �
�� ������ � �
�� ��
�
� 	
 ������� �

I ��	 � �
�� 	�����
 � �
�� ������� � �
�� ��
�
� 	� �	����� 	

I ��	 � �
�� 	�����
 � �
�� ����	�� � �
�� ��
�
� 	� �
��
�� �

I ��
� � �
�� ��	���� � �
�� ��
���� � �
�� ��
�
� 	
 ��	���� �

I ��
� � �
�� ��	���� � �
�� ����	�� � �
�� ��
�
� 	� �		���� 	

II ��	 � �
�� ��
��
� � �
�� ������� � �
�� 

II ��� � �
�� ��
��
� � �
�� ����� � �
�� �
II ��	 � �
�� ��
��
� � �
�� ���	� � �
�� �
II ��
� � �
�� ��
��
� � �
�� ���
�� � �
�� 


III ��	 � �
�� �����
 � �
�� ���	��� � �
�� �
III ��	 � �
�� �����
 � �
�� ��		��	 � �
�� �
III ��	 � �
�� �����
 � �
�� ��	���� � �
�� �
III ��
� � �
�� ����
�	 � �
�� ��
	�
 � �
�� �
III ��
� � �
�� ����
�	 � �
�� ����	� � �
�� �

IV ��	 � �
�� �����
 � �
�� ���	��� � �
�� �
IV ��	 � �
�� �����
 � �
�� ������� � �
�� 	
IV ��
� � �
�� ����
�	 � �
�� ������� � �
�� �
IV ��
� � �
�� ����
�	 � �
�� ������� � �
�� �
IV ��
� � �
�� ����
�	 � �
�� ���
��� � �
�� �

VI ��
� � �
�� ����	 � �
�� ������� � �
�� �
VI ��
� � �
�� ����	 � �
�� ����
�� � �
�� �

TABLE 4. Data of the reduction�

p case �
 a x

��� I 
�� �
�� � ��	�
��� I �
� � ����
��� I ��
�� �� ����
���� I �
� � ����
���� I �
�� �� ����
���� I �
� � 
��
���� I �
�� �� 
��

��� II 
�� �
��� �
�� ��
�� � ����
��� II 
�� �
��� �
�� ��
�� � ����
��� II 
�� �
��� �
�� ��
�� � ����
���� II 
�� �
��� �
�� ��
�� � �����
���� VI �
� � 
		��
���� VI ��
�� �� 
		��
���� VI 
�� �
�� � 
		��

TABLE 5. The solutions of ��
��
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case p f� f� integral basis � �

I all x���x��	 x���x��� �� � �� � ��� �� ����� ��

II ��� x����	x�������� x�����x��

��	 �� � �
���

�� �
���

� ��� �� ����� �� � ����
II ��� x��	��x�����	�� x�����x�����
	 �� � �

���
�� �

���
� ��� �� ����� �� � ����

II ��� x�����	x����	

� x�����x�������	 �� � �
���

�� �
���

� ��� �� ����� �� � ����
II ���� x���	��x����
����	 x������x���		�	�� �� � �

����
�� �

����
� ��� �� ����� �� ������

III ��� x������x���	����
� x������x���x��� �� � �������

� � ������

� ��
������	� ��� �� � ���
III ���� x��
���	x������������ x���	x������ �� � ����

�
 � ����

�
 ��� ��� ����
� �	 �����
IV ��� x�����	�x���	����
� x����x����� �� � ����

� � �����

� ��� ��� ����� �	 � ���
IV ���� x�����
�x������������ x���x����x����x��� �� � 
����

� � 
����

� ����������� �	� �� �����
V ��� x�������x������	���� x��
�x����� �� � ����

� � �����

� ��� 
�� ����� �� � ���
V ���� x����
���x����	
	
			�	 x���	x������ �� � �� � ��� �	� ����� �� �����
VI ��� x������x������	���� x����x����� �� � �	���

�
 � �	����

�
 ��� ��� ����
� �� � ���
VI ���� x���	��x����	
	
			�	 x���x������ �� � �	���

�� � �	����

�� ��� �	� �� �� �� �����

case p �� class group � log j�j � �

I all � trivial ��� �� �� �� ������	
�
�� � � � ��� ����� �� �

II ��� � C� ������
��������
���
���	�	������
���
	���������	�����������	����������

���
�����������
����
�	�
�����	�
�
��		����

�����������������
������

�����
������� � � � ��� ����� �� ��

II ��� � C�� ����������������� ��	� 	������
���� � � � ��� ����� �� ��
II ��� � C	�C� ������� ����� ���	����		� ����	��
	���� � � � ��� ����� �� ��
II ���� � C	�C� �	�������
������� �	�	��	��������

���
		���	�����	����
����		������
����
������	
 � � � ��� ����� �� �

III ��� �� trivial ���
� 
�� ����
� 
����������	 � � � ��� ����� �� ��
III ���� � C� ������ ��
�����
���	��� ��
	��
�
��	 � � � ��� ����� �� �

IV ��� � C� ��	� ��������� ������	
���� � � � ��� ����� �� �

IV ���� �� trivial ������ 		�� ��	������ 	�������
��� � � � ��� ����� �� �

V ��� � C� ����� ������	����� ������
���	� � � � ��� ����� �� ��
V ���� � C	 ��� �� �� �� ������������ � � � ���� ����� �� �

VI ��� � C� ������ �� �� ������������ � � � ��� ����� �� �

VI ���� � C	 ������� ��� �� �������
�	�� � � � ��� ����� �� ��

TABLE 6. Field data� The number � is de�ned on page �
�� In each case we give the �eld in terms of a somewhat
simpler generator � Top� f� and f� are de�ning polynomials for � and � The notation �a� b� c� d� is used for
an algebraic number to denote its coe�cients with respect to the given integral basis� Note that K is always
a quadratic extension of Q i�� and is totally complex�� � is the �eld discriminant� Bottom� � is the nontrivial
Q i��automorphism� � is a generator of the group of units modulo torsion� � is a generator of the group of
torsion units hence an embedding into C sends � to �i�� and � � �����
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We will also compute some other paramaters needed
in Section �� Numerical values of the �i are given to

� decimal places� which is su�cient to perform the
reduction steps�
We have to study several quartic �elds K � Q ���

which we did using Pari ���	� The number � is de�ned
in Section ��� The results are presented in Table ��
Our next task is to compute the decomposition of ��

and p� into prime ideals� and from this� all possibilities
for 
� using A���� We always have 
 � ��k
j or 
 �
��k�
j� for k � f�� �g� where 
j is given in Table 	�
Note that in the cases V for both p � ��� and p �

����� and in the case VI for p � ��� we have found a
contradiction� no principal ideal satisfying A��� exists�
We next have to compute heights� We made maybe

sometimes rough estimates� but they are su�cient for
our purposes� In fact� in any case we have

h���� � �h�� � log j�j�
h
j�
j� � �h
j� � �

� logNK�Q 
� � log
p
�Dp�

Note that in the cases II for all p we �nd 
��
� � e��i���
so the linear form � can be written as � � A���L����
So then we have rede�ned �� as ���� and �� as ��
We now have su�cient data to apply the main theo�

rem of Baker and W�ustholz ������� Thus we computed
the constant C appearing in inequality ����� in each
case� and we give C�K�B� in Table ��
Finally we present in Table � the numerical values of

the numbers ��� �� to su�cient precision� They serve
as input for the essentially Euclidean� reduction algo�
rithm�
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case p j K � C � B� �

I ��� � ������� �����������	 ��
���������
I ��� � ������
	 ���
�������	 ��		��������
I ��� � 	�����	 �����������	 ������������
I ��� � ���
��� �����������	 ������������
I ���� � 	�����
 ���
�	�����	 	�����������
I ���� � 	�
���� ���
�	�����	 	�����������
II ��� � ���	��� �����������
 ����	������

II ��� � ���	��� ��
��������� ����	������

II ��� � ���	��� ����	������� ����	������

II ���� � ���	��� ���
�������
 ����	������

III ��� � �������� ��
��������� ����		������
III ��� � ����	�
� ��
��������� ����		������
III ��� � ��������� ��
��������� ����		������
III ���� � ���
������ ���
�������� ��
	�	������
III ���� � ����	���	�� ���
�������� ��
	�	������
IV ��� � �������	 ������������ ����		������
IV ��� � �����
��� ������������ ����		������
IV ���� � �
���	���� ������
����� ��
	�	������
IV ���� � ��������� ������
����� ��
	�	������
IV ���� � ������	�� ������
����� ��
	�	������
VI ���� � �
������ ���
�	������ ���
��������
VI ���� � 	�������� ���
�	������ ���
��������

TABLE 7. Constants and upper bounds�

equation y� � k � x��� J� Number Theory � ������
��������

�Gebel and Zimmer ����� J� Gebel and H� G� Zimmer�
�Computing the Mordell�Weil group of an elliptic
curve over Q �� pp� ���	� in Elliptic curves and

related topics� edited by H� Kisilevsky and M� R�
Murty� CRM Proc� Lecture Notes �� Amer� Math�
Soc�� Providence� RI� �����

�Gebel et al� ����� J� Gebel� A� Peth�o� and H� G�
Zimmer� �Computing integral points on elliptic
curves�� Acta Arith� ���� ������ ��������

�Mignotte and Peth�o ���
� M� Mignotte and A� Peth�o�
�On the system of Diophantine equations x���y� �
�
 and x � �z� � ��� Math� Scand� ���� ���
��

�����

�Pohst and Zassenhaus ��	�� M� Pohst and H� Zassen�
haus� Algorithmic algebraic number theory� Encyclo�
pedia of Mathematics and its Applications ��� Cam�
bridge University Press� Cambridge� ��	��
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case p decomposition ideals ��� 
j

I all ��� � q
�

q � ���� �� �� ���

I ��� ��	
� � p��p� p � ���� ���������� q
�
p
m��p���m �� � ����������� ��

I ��� ����� � p��p� p � ��� ���� ��� q
�
p
m��p���m �� � ���� �	� 	���

I ���
���
� � p� � ���� �� ������

q
�
p
m
� ��p��

��m
p
n
���p��

��n �� � ���� �	� ������
p���p��p���p�� p� � ������� �� ��� �� � �������� �� �
�

I ����
������ � p� � ���� �� ������

q
�
p
m

� ��p��
��m

p
n

���p��
��n �� � �		���	������
�

p���p��p���p�� p� � ���� �� �� ��� �� � �
���������� 
�

��� � q
�

q � �������
��
���	�
������	����	�
�
����	���	��������

II ���
�	
��	����������

q
�
p �� � ��� �� �� ��

��	
� � p��p� p � ������������		����
�
����	���	��������
�������������������



		�������������

II ���
��� � q

�
q � ���	� ����	�����

q
�
p �� � ��� �� �� ��

����� � p��p� p � ��������	� ��������

��� � q
�

q � ������ ����������
II ��� ���
� � p

�

�p
�

� p�� p� nonprincipal q
�
p�p� �� � ��� �� �� ��

p�p� � ������� �
���		� �����

��� � q
�

q nonprincipal
������ � p��p� p� nonprincipal

II ����
qp� � ����
������ ��
�

q
�
p�p� �� � ��� �� �� ��

�����
	��� ���
����
p� � ������	

��� ���
	���

����
�������������

��� � q
���q�� q � ���� �� �� ��� �� � �	��� �������
� ���

III ��� ���
� � p���p��p
�

� p� � �����	� �� ��� q
m��q���mp

l
���p��

��l
p
�

� �� � ��� �� ��
� ��
p� � ������� �� ��� �� � ������ ��������	� ���
�

��� � q
�

q � ����� ���	�� 
��
�� � �	������	��� 
��������

III ���� ������ � p���p��p
�

� p� � ���� �� �� ��� qp
l
���p��

��l
p
�

�
�� � ��
	��� �	����
��	�� ���
�

p� � ���� �� �� ���

��� � q
�

q � ���� �� �� ���
�� � ������
	� ���� ��

IV ��� ���
� � p���p��p
�

� p� � ���� ����� ��� qp
l

���p��
��l

p
�

�
�� � �	
�� ��
� ��
� ��

p� � ���� �� �� ���

��� � q
���q�� q � ������� �� ��� �� � ��
��� 		��������

�

IV ���� ������ � p���p��p
�

� p� � ���
� �
����� 
�� q
m��q���mp

l

���p��
��l

p
�

� �� � ������������ ����� ��
p� � ������� �� ��� �� � �	��	� 
	�����	������	��

V ���
��� � q

�

q� p�� p� � A
�

q
�
p
l
���p��

��l
p
�

� none
���
� � p���p��p

�

�

V ����
��� � q

�

q� p�� p� � A
�

q
�
p
l

���p��
��l

p
�

� none
������ � p���p��p

�

�

VI ���
��� � q

�

q� p�� p� � A
�

q
�
p
l
���p��

��l
p
�

� none
���
� � p���p��p

�

�

��� � q
�

q � ����������� ���
�� � ������ ���� ������

VI ���� ������ � p���p��p
�

� p� � ����� ���������� q
�
p
l
���p��

��l
p
�

�
�� � ������� ����� ��������

p� � ����������� ���

TABLE 8. Possibilities for 
j � In the column 
� the parameters m�n run through f�� �g� and l runs through
f�� �� �g� In the column �ideals�� A is an ideal class generating the class group�
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case p j

I all � �� � ����
�
���	���
	������	�	�������	�������	������ � � �

I �	
 � �� � ����	�
���
��������	�
��	�������	�
�
��	��
��� � � �

I ��� � �� � �������
������
����	
������		��	�������	��
����� � � �

I ��
 � �� � ���
��	�	��
�����

���������
��			��������������	� � � �

I ��
 � �� � ��������	������
	�������	���	�����	���
��������� � � �

I ���� � �� � ��	����
�	��
����
��	����
��	����
��	���
���
��	 � � �

I ���� � �� � �����	����	
���	�������
	�����	���������

	�� � � �

II �	
 � �� � ����
���
������������	��		�	�����������	��������
� � � �

II ��� � �� � �����	������
���	�������	��	���		��	�	
	��
�� � � �

II ��
 � �� � ���
�
�
���������
�������	���	�
�����
����

�
� � � �

II ���� � �� � �����
	�	��������
����	���
���	
	
�		����	� � � �

III ��
 �� �� � �� � ��������	
���	
����������	�����
���
�����
���� � � �

III ��
 � �� � ���
���������	�
����		���	����	����
�����
	�����	� � � �

III ��
 � �� � ��������������
��
������������	
�������������
��		 � � �

III ��
 � �� � ����	�������
�	��
�������	���	���
		���

�
�������
 � � �

III ���� �� � �� � ���	�

�	
��������		

������
	
�
�������	�
��
��
 � � �

III ���� � �� � ���	��
����
���

�������	�
���������
�����
�
�����
 � � �

III ���� � �� � ��	�����������������	�

��	�
��	����������	������ � � �

IV ��
 �� � �� � ����	����
�����������
��
	�����		����
�	������������ � � �

IV ��
 � �� � �������������	��
����	�������	���
��			�
��
�
��� � � �

IV ��
 � �� � ��������
	���
���
�	�
�����	��������			��
��
�	�� � � �

IV ���� �� �� � �� � ���
�		�
����������	

���
���	
�	
���������		�
� � � �

IV ���� � �� � ��	�		�����			����	
���
	���������������		���
�
� � � �

IV ���� � �� � ����

����
���������
�
�����
�������������������	
 � � �

IV ���� � �� � ��������	�	���	���

�����
�	������������

�����	�� � � �

VI ���� �� � �� � ��������
	�	
�
�	�����������
����	�	���	��
� � � �

VI ���� � �� � �����������	�����������	�	���������	�
�
������		
 � � �

VI ���� � �� � ������
������
�����
	
��

�������������������	 � � �

TABLE 9. The input data for the reduction algorithm�

�Schmitt ����� S� Schmitt� �Computation of the Selmer
groups of certain parameterized elliptic curves�� Acta
Arith� ���� ������ �����
��

�Smart ����� N� P� Smart� �S�integral points on elliptic
curves�� Math� Proc� Cambridge Philos� Soc� �����
������ ��������

�Stroeker and Top ����� R� J� Stroeker and J� Top�
�On the equation Y � � X � p�X� � p���� Rocky
Mountain J� Math� ���� ������ ���
������

�Stroeker and Tzanakis ����� R� J� Stroeker and N�
Tzanakis� �Solving elliptic Diophantine equations by

estimating linear forms in elliptic logarithms�� Acta
Arith� ���� ������ ��������

�Stroeker and de Weger ����� R� J� Stroeker and
B� M� M� de Weger� �On elliptic Diophantine equa�
tions that defy Thue�s method� the case of the Ochoa
curve�� Experiment� Math� ��� ������ ��������

�Tzanakis and de Weger ��	�� N� Tzanakis and
B� M� M� de Weger� �On the practical solution of
the Thue equation�� J� Number Theory ���� ��	���
�������

�de Weger ����� B� M� M� de Weger� �S�integral
solutions to a Weierstrass equation�� J� Th� Nombres

Bordeaux 	�� ������ �	������
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